Impacts of Contracted Endodontic Cavities on Instrumentation Efficacy and Biomechanical Responses in Maxillary Molars

Brent Moore, DMD,* Konstantinos Verdelis, DDS, PhD; Anil Kisben, MDS, PhD; Thuan Dao, DMD, MSc, DipProstho, PhD, FRCD(C),§ and Shimon Friedman, DMD*

Abstract

Introduction: Recently, we reported that in mandibular molars contracted endodontic cavities (CECs) improved fracture strength compared with traditional endodontic cavities (TECs) but compromised instrumentation efficacy in distal canals. This study assessed the impacts of CECs on instrumentation efficacy and axial strain responses in maxillary molars.

Methods: Eighteen extracted intact maxillary molars were imaged with micro–computed tomographic imaging (12-μm voxel), assigned to CEC or TEC groups (n = 9/group), and accessed accordingly. Canals were instrumented (DCTaper2H; SSWhite Dental, Lakewood, NJ) with 2.5% sodium hypochlorite irrigation, reimgaged, and the proportion of the modified canal wall determined. Cavities were restored with bonded composite resin (TPH-Spectra-LV; Dentsply International, York, PA). Another 28 similar molars (n = 14/group) with linear strain gauges (Showa Measuring Instruments, Tokyo, Japan) attached to mesiobuccal and palatal roots were subjected to load cycles (50–150 N) in the Instron Universal Testing machine (Instron, Canton, MA), and the axial microstrain was recorded before access and after restoration. These 28 molars and additional 11 intact molars (control) were cyclically fatigued (1 million cycles, 5–50 N, 15 Hz) and subsequently loaded to failure. Data were analyzed by the Wilcoxon rank sum and Kruskal-Wallis tests (α = 0.05).

Results: The overall mean proportion of the modified canal wall did not differ significantly between CECs (49.7% ± 12.0%) and TECs (44.7% ± 9.0%). Relative changes in axial microstrain responses to load varied in both groups. The mean load at failure for CECs (1703 ± 558 N) did not differ significantly from TECs (1384 ± 377 N) and was significantly lower (P < .005) for both groups compared with intact molars (2457 ± 941 N).

Conclusions: In maxillary molars tested in vitro, CECs did not impact instrumentation efficacy and biomechanical responses compared with TECs. (J Endod 2016;42:1779–1783)

Key Words

Endodontic cavity, fracture strength, instrumentation efficacy, minimally invasive, root strain

Significance

Fracture after endodontic treatment is an ongoing concern. Modern dentistry has seen a trend towards minimally invasive treatments. In endodontics, removal of tooth structure increases the susceptibility of teeth to fracture that gave rise to the concept of contracted cavities.

Contracted endodontic cavities (CECs), inspired by concepts of minimally invasive dentistry (19), emphasize tooth structure preservation including pericervical dentin (7, 8). We previously reported (20) that CECs, compared with TECs, improved fracture strength under a continuous load in unrestored mandibular premolars and molars but not in maxillary incisors, and compromised instrumentation efficacy in distal canals of mandibular molars but not in premolars and incisors. These results, suggesting that the impact of CECs varied in different tooth types when unrestored, might not be extrapolated to restored maxillary molars in which the morphology is distinctly different. Also, unlike available data on fracture strength of intact mandibular molars (21), respective data on maxillary molars are lacking. Therefore, this study assessed the impacts of CECs on canal instrumentation efficacy and biomechanical responses in maxillary molars.

From the *MSc Endodontics Program, †Discipline of Endodontics and Dental Research Institute, Faculty of Dentistry, and ‡Discipline of Prosthodontics, University of Toronto, Toronto, Ontario, Canada; and §Division of Endodontics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. Address requests for reprints to Prof Shimon Friedman, MSc Endodontics Program, Faculty of Dentistry, University of Toronto, 124 Edward Street, Toronto, ON M5G 1G6, Canada. E-mail address: shimon.friedman@dentistry.utoronto.ca

Copyright © 2016 American Association of Endodontists. http://dx.doi.org/10.1016/j.joen.2016.08.028
Basic Research—Technology

restored with bonded composite resin. We tested the null hypotheses that CEGs would not impact instrumentation efficacy, axial root strain, or fracture strength after cyclic fatigue.

Materials and Methods

After research protocol approval by the University of Toronto Research Ethics Board, 59 extracted human noncarious, mature, intact, maxillary molars were stored in 0.1% thymol solution at room temperature until used. The absence of preexisting cracks was verified under the operating microscope. Crown dimensions, length, and canal curvature of teeth, determined by 2 perpendicular radiographic exposures, were considered for matching teeth allocated into groups.

Sample and Groups

The sample size was estimated based on studies comparing fracture strength for TECs and CEGs (20) and the proportion of untouched canal wall (20, 22–24), both with 10 teeth per group. Accordingly, for analysis with $\alpha = 0.05$ and 80% power, at least 10 teeth were allocated for each of the following groups: CEC (experimental), TEC (control), and intact (negative control for fracture strength testing) for different aspects of the study.

Instrumentation Efficacy

A subset of 20 teeth assigned to the CEC and TEC groups was imaged with micro–computed tomography (micro-CT) (SkyScan 1172; Bruker MicroCT, Kontich, Belgium) at 12-μm voxel size, 70-kVp beam energy, 10 frames/view, and 400-millisecond exposure, and the canals were captured (pretreatment volumes). Mineral density was calibrated with mineral analogue rods and ReCon software (Bruker MicroCT) used for 3-dimensional (3D) reconstruction.

Eighteen teeth (1 tooth/group was lost during processing) were accessed under the operating microscope. In the CEC group ($n = 9$), endodontic cavities were drilled with high-speed Endoguides burs (EG1A; SSW White Dental, Lakewood, NJ). Cavities were accessed at the central fossa and extended only as necessary to access canal orifices while preserving pericervical dentin and part of the chamber roof or “soft” (7, 8) (Fig. 1A). In the TEC group ($n = 9$), endodontic cavities were drilled with tapered high-speed diamond burs (F392-016; Axis Dental, Coppell, TX) following conventional guidelines (5, 6). Outline and pericervical dentin were modified as needed until all orifices could be visualized in the same field of view.

Canals were negotiated with size 10 K-type files (Flexofile; Dentsply Maillefer, Ballaigues, Switzerland) to the major apical foramen and the working length established 0.5 mm shorter. After initial preparation with PathFile instruments (Dentsply Maillefer), canals were instrumented with DCTaper2H rotary instruments (SSWhite Dental) to size 20/06 and 30/06 in buccal and palatal roots, respectively. These heat-treated instruments were precurved to facilitate placement into ca-nals. New instruments were used for each tooth. Intermittent irrigation with 5 mL 2.5% sodium hypochlorite was applied with ProRinse side-vented 30-G needles (Dentsply International, York, PA).

Instrumented canals were captured with micro-CT (post-treatment volumes) as described previously. Reconstructed 3D volume data were converted from a bitmap image file to the Digital Imaging and Communications in Medicine format and processed with Scanco 3D morphometry analysis software (Scanco Medical, Brüttisellen, Switzerland). Coronal canal boundaries were set at orifice levels. Isthmus pathways in mesiobuccal roots were excluded. Where a wide isthmus was present, canal boundaries were set at the transition between the main canal and the isthmus. Customized script for algorithm-based registration (20, 22, 24) was used to process pre- and post-treatment volumes with a precision of 1 ± 1 voxel. Accordingly, dentin removal depth ≥24 μm was determined as a modified canal wall (MCW) surface.

Biomechanical Responses

Another subset of 28 teeth was used to record apicocoronal axial strain under simulated physiologic occlusal stresses (10, 11). Teeth were mounted up to 3 mm apical to the cementoenamel junction in customized cylinders fabricated with self-curing resin (SR Ivolen; Ivoclar Vivadent, Schaan, Lichtenstein), with a 0.2-mm-thick lining of

Figure 1. CEC in a maxillary molar. (A) The occlusal view; for comparison, a TEC is outlined with a dotted line. (B) The distal view of registered 3D reconstructed micro-CT images showing the root canals (red) pretreatment and (yellow) post-treatment. The pulp chamber and endodontic cavity within the coronal tooth portion are not color coded.
polyvinyl siloxane (Aquasil Ultra Monophase Regular Set, Dentsply International) simulating the periodontal ligament. Foil strain gauges (N11-FA-2-120-11; Showa Measuring Instruments, Tokyo, Japan) were glued with rapid-setting cyanoacrylate adhesive (Instant Adhesive Aron Extra 4000; Toagosei, Tokyo, Japan) on the mesiobuccal and palatal cervical root surfaces to and sealed with polyurethane varnish (PU40; Hottinger Baldwin Messtechnik, Darmstadt, Germany).

Teeth were mounted in the Instron Universal Testing machine (Instron, Canton, MA). Axial forces, directed at 50° angle from the tooth’s long axis, were cycled between 50 N and 150 N and the voltage-change outputs from the strain gauges, connected by a half Wheatstone bridge, converted to strain measurements by a data-acquisition module (DQ 430 EspressoDAQ; HBM Canada, Pickering, ON). Microstrain values were recorded using Daq software (Catman Easy, EspressoDAQ version 1.0.2, HBM Canada) at each of the mesiobuccal and palatal surfaces. Axial strain was recorded before endodontic cavities were drilled and again after the completion of canal instrumentation.

Canals of the 28 teeth were accessed as per CEC and TEC group designation (n = 14/group) and instrumented as described earlier. Subsequently, endodontic cavities were etched with 38% phosphoric acid gel (Etch-Rite; Pulpdent, Watertown, MA), rinsed with water, air-dried, coated with OptiBond Solo Plus (Kerr Corp, Orange, CA), air-dried, and restored with TPH Spectre Universal Composite Restorative LV (Dentsply International) applied in <2-mm increments, each cured for 20 seconds. Teeth were then stored in 0.1% thymol solution at room temperature for 2 weeks, and microstrain measurements were repeated.

Subsequently, the 28 teeth assigned to the CEC and TEC groups and the remaining subset of 11 teeth were submerged in a water bath at room temperature and subjected to 1 million loading cycles in the Instron Universal Testing machine between 5 N and 50 N at 15 Hz to simulate approximately 4 years of chewing function (25) using forces within the physiological range (26). After this fatigue phase, continuous compressive force was applied with a 5-mm spherical crosshead at 1 mm/min until failure occurred, defined as a 25% drop in applied force, and the load at failure recorded (N).

**Analysis**

MCW was expressed as a proportion of the total canal wall area for the coronal and apical halves of each root. The corresponding mean MCW values for the CEC and TEC groups were analyzed with the Wilcoxon rank sum test. Average pre- and post-treatment microstrain values were calculated separately for the mesiobuccal and palatal surfaces of each tooth. Corresponding median values for the CEC and TEC groups were analyzed with the Wilcoxon signed rank sum test. In addition, the relative microstrain change (pretreatment value divided by post-treatment value) was determined as previously reported for relative stiffness (11). The median relative microstrain at the mesiobuccal and palatal surfaces for the CEC and TEC groups was evaluated qualitatively. The mean load at failure values were calculated for the CEC, TEC, and intact control groups and analyzed with the Kruskal-Wallis and post hoc Dunn tests. All tests were 2 tailed, and significance was set at 5% level.

**Results**

**Instrumentation Efficacy**

No instruments fractured during canal preparation. All present second mesiobuccal canals, as verified by micro-CT imaging, were instrumented. Figure 1B shows registered pre- and post-treatment reconstructed micro-CT images of a molar with a CEC. The mean proportion of MCW (Table 1) was highest in the coronal half of the distobuccal canals in the CEC group (59.7 ± 16.8%) and lowest in the apical half of the palatal canals in the TEC group (34.6 ± 15.4%). It did not differ significantly (P > .15) between the CEC and TEC groups in any of the roots or canal levels.

**Biomechanical Responses**

Figure 2 depicts axial microstrain measurements obtained from a molar with a CEC. Pre- and post-treatment microstrain values did not differ significantly between the mesiobuccal and palatal surfaces of teeth and between the CEC and TEC groups. The median relative microstrain values were higher at the palatal surfaces (CEC = 0.74, TEC = 0.94) than at the mesiobuccal surfaces (CEC = 0.53, TEC = 0.37).

The mean load at failure values (Fig. 3) did not differ significantly between the CEC (1703 ± 558 N; range, 1205–3021 N) and TEC (1584 ± 377 N; range, 966–2381 N) groups but were significantly lower (P < .05) for both groups compared with the intact controls (2457 ± 941 N; range, 1252–3806 N). Fractures were mesial distal and buccal palatal with varying levels of apical extension but no apparent pattern observed in any group.

**Discussion**

To advise the debate on the CEC concept, we previously assessed the net impacts, without restorations, of CEC designs in 3 tooth types (20). Improved fracture strength, a potential benefit, was observed in mandibular premolars and molars but not in maxillary incisors; compromised canal instrumentation efficacy, a potential risk, was observed only in the distal canals of mandibular molars (20). The varied impacts of CECs in the different tooth types (20) warranted the present investigation into specific impacts of CECs in maxillary molars.

The use of mature, intact maxillary molars was a priority to avoid the effects of varying degrees of tooth structure loss. Although matched for external dimensions when allocated to the CEC and TEC groups, some teeth in both groups had short roots and fairly large pulp chambers and canals, limiting the applicability of the results to maxillary molars with similar characteristics. Canals were instrumented with DCTaper2H instruments that, because of regressive taper design, have smaller D12 diameters (0.64 mm for 20/v06) than continuously tapered 20/v04 and 20/v06 instruments (0.68 mm and 0.92 mm, respectively). Because these slimmer instruments were expected to engage less pericervical dentin than would occur with larger instruments,

**Table 1.** Modified Canal Wall after Instrumentation in Maxillary Molars Performed through a Contrasted (CEC) or Traditional (TEC) Endodontic Cavity Assessed by Micro–Computed Tomography Images

<table>
<thead>
<tr>
<th>Root (n = 9)</th>
<th>Assessed canal level</th>
<th>CEC</th>
<th>TEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesiobuccal</td>
<td>Coronal half</td>
<td>57.1 ± 18.2</td>
<td>54.3 ± 17.0</td>
</tr>
<tr>
<td></td>
<td>Apical half</td>
<td>49.2 ± 10.1</td>
<td>45.1 ± 18.6</td>
</tr>
<tr>
<td></td>
<td>Total canal</td>
<td>53.1 ± 11.6</td>
<td>49.7 ± 16.5</td>
</tr>
<tr>
<td>Distobuccal</td>
<td>Coronal half</td>
<td>59.7 ± 16.8</td>
<td>51.6 ± 12.2</td>
</tr>
<tr>
<td></td>
<td>Apical half</td>
<td>58.3 ± 14.4</td>
<td>46.7 ± 9.8</td>
</tr>
<tr>
<td></td>
<td>Total canal</td>
<td>59.0 ± 14.5</td>
<td>49.2 ± 10.6</td>
</tr>
<tr>
<td>Palatal</td>
<td>Coronal half</td>
<td>36.3 ± 17.0</td>
<td>39.4 ± 15.1</td>
</tr>
<tr>
<td></td>
<td>Apical half</td>
<td>40.3 ± 22.8</td>
<td>34.6 ± 15.4</td>
</tr>
<tr>
<td></td>
<td>Total canal</td>
<td>38.3 ± 19.2</td>
<td>37.0 ± 14.4</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>49.7 ± 12.0</td>
<td>44.7 ± 9.0</td>
</tr>
</tbody>
</table>

*Modified canal wall is expressed as a proportion of the total canal wall area; mean and standard deviation values presented by coronal and apical halves of the 3 roots.*

**Basic Research—Technology**

**JOE — Volume 42, Number 12, December 2016**

**Contracted Endodontic Cavities 1781**
Figure 2. Axial microstrain measured at the mesiobuccal and palatal cervical root surfaces of a maxillary molar under simulated physiologic loads (50–150 N) using the Instron Universal Testing machine. Measurements were obtained before access (pre-op) and after contracted (CEC) access, canal instrumentation, and bonded composite resin restoration (post-op). Although the pre- and post-op measurements at the palatal surface were similar, the measurements at the mesiobuccal surface changed from compressive microstrain pre-op to tensile microstrain post-op.

Instrumentation efficacy was assessed with higher-resolution micro-CT imaging than in previous studies (20, 22–24), providing a threshold of 1 ± 1 voxel or 24 μm to detect canal wall modification. Instrument tip sizes of 20/06 and 30/06 were preselected to avoid operator bias; however, these sizes turned out to be small for the dimensions of some canals encountered in this study, undermining instrumentation efficacy and the universal applicability of the corresponding results. In addition to the regressive taper, increased flexibility and cyclic fatigue resistance of the heat-treated instruments compared with similar nontreated instruments (27) were deemed desirable considering the constrained pathways to canals. Indeed, no instrument fracture or ledge formation occurred in any of the teeth.

Endodontic cavities were restored with bonded composite resin to simulate clinical procedures while facilitating loading, in contrast to our previous study (20). Such restorations may restore fracture strength of teeth up to 72% of that of intact teeth (17). Another difference from our previous study (20) was the fatiguing of teeth with cyclic loading to accommodate the understanding that fractures in root-filled teeth are considered to be fatigue failures, arising from microdefects within the dentin and at the restoration-tooth interfaces (28). Although standard deviations of load at failure values were larger than what we observed in unrestored and nonfatigued mandibular molars (20), they were consistent with other fracture studies of molar teeth (18, 21).

Instrumentation efficacy in the maxillary molars with CECs and TECs was poor overall with no significant difference detected. Instrumentation modified 49%–59% of buccal canal walls and about 38% of palatal canal walls, corroborating the limited efficacy of engine-driven instruments previously shown in all tooth types (20, 22, 23). Although in this study we instrumented rather wide canals with relatively slim instruments, instrumentation efficacy was comparable with what we reported in mandibular molars (20) with CECs (43%–52%) and TECs (52%–63%) and only slightly below the 55%–67% reported elsewhere in maxillary molars (22, 23). Instruments’ contact with canal walls is needed to mechanically debride pulp tissue and disrupt bacterial biofilm (29). The finding, under the conditions of this study, that CECs did not compromise instrumentation efficacy in maxillary molars suggested no apparent risk in this regard.

Axial microstrain varied without a discernible pattern for the CEC and TEC groups. Intracanal dentin removal increases root deformation (14), and tooth structure loss increases strain in teeth (12, 13). The minimal change in microstrain at palatal root surfaces and greater changes at the mesiobuccal root surfaces in maxillary molars from both groups suggested that the mesiobuccal cusp was more prone to deformation after access and canal instrumentation than the relatively robust palatal cusp. The recorded changes in microstrain might also be affected by polymerization shrinkage of the bonded composite resin restorations (30), whereby resulting contractile forces produced tensile strain (30) leading to increased tooth stiffness (31).

Fracture strength in the restored maxillary molars with CECs and TECs was comparable and consistently lower than that of intact molars. The nonsignificant 23% increase in fracture strength for CECs compared with TECs sharply contrasted with the 247% increase we reported for unrestored mandibular molars with CECs (20), and it did not reach the fracture strength level of intact maxillary molars as it did in mandibular molars (20). Thus, CECs in restored maxillary molars did not positively impact fracture strength, suggesting no apparent benefit in this regard. The compromised fracture strength even with CECs supported the use of cuspal or full-coverage definitive restorations to limit tooth structure deformation and possible fracture, as recommended for posterior endodontically treated teeth (2, 4, 11, 32, 33).

The fracture strength of intact maxillary molars was previously reported at 4960 ± 1147 N (34), considerably greater than the mean load at failure just below 2500 N after cyclic fatiguing herein. That discrepancy might be attributed to the loading of teeth with a 7.5-mm diameter cylinder in the previous study (34) compared with the 5-mm diameter ball herein; with the larger cylinder, a greater force is needed than with the smaller ball to generate the critical pressure required to fracture the tooth. Interestingly, the current load at failure of intact maxillary molars was only 21% higher than the 2029 N we reported for nonfatigued intact mandibular molars (20). Although the use of cyclic fatiguing herein precluded direct comparison, the results suggested greater robustness of maxillary molars that might moderate the
risk of fracture after endodontic treatment. Indeed, Zadik et al (33) reported a much lower incidence of fracture among endodontically treated maxillary molars compared with mandibular molars.

Minimally invasive dentistry interventions (19), highlighting the preservation of natural tissues, require successful intersection of (1) specific benefits outweighing potential risks, (2) procedure-driven technologies, and (3) skills adaptation by clinicians (7, 8). Although minimally invasive interventions have been embraced in some areas of dentistry (19), the CEC concept in endodontics has largely been opposed because it poses challenges not encountered with TECs (5).

Technologies (eg, operating microscopes and improved nickel-titanium instruments) are available that enable treatment with less “convenience form” (7, 8). Therefore, whether clinicians should strive to adapt skills for the routine use of CECs should hinge on clinically proven benefits (lower fracture rates) and dismissed risks (no compromised healing). Until such clinical evidence becomes available, in vitro research can suggest benefits and risks. This in vitro study neither supported apparent biomechanical benefits in vitro available, (no compromised healing). Until such clinical evidence becomes available, in vitro research can suggest benefits and risks. This in vitro study neither supported apparent biomechanical benefits nor an instrumentation efficacy risk associated with CECs in maxillary molars, which was in line with our observations in maxillary incisors but not in unrestored mandibular premolars and molars (20). Considering that maxillary molars present with particularly challenging root canal systems in mesiobuccal roots, where secondary canals are difficult to locate and negotiate (35), the application of CECs in these teeth merits careful consideration. In conclusion, given the limitations of in vitro testing and the conditions of this study, CECs in maxillary molars did not appear to impact instrumentation efficacy and biomechanical responses compared with TECs.

Acknowledgments

The authors thank Dr. Rong Chong for processing the micro-CT data and Mr. Jian Wang for technical assistance with the use of the Instron Universal Testing machine.

Supported in part by the American Association of Endodontists Foundation and the Canadian Academy of Endodontics Endowment Fund.

The authors deny any conflict of interest related to this study.

References